"""Tool for the Tavily search API."""

from typing import Dict, List, Literal, Optional, Tuple, Type, Union

from langchain_core.callbacks import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain_core.tools import BaseTool
from pydantic import BaseModel, Field

from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper


class TavilyInput(BaseModel):
    """Input for the Tavily tool."""

    query: str = Field(description="search query to look up")


class TavilySearchResults(BaseTool):  # type: ignore[override, override]
    """Tool that queries the Tavily Search API and gets back json.

    Setup:
        Install ``langchain-openai`` and ``tavily-python``, and set environment variable ``TAVILY_API_KEY``.

        .. code-block:: bash

            pip install -U langchain-community tavily-python
            export TAVILY_API_KEY="your-api-key"

    Instantiate:

        .. code-block:: python

            from langchain_community.tools import TavilySearchResults

            tool = TavilySearchResults(
                max_results=5,
                include_answer=True,
                include_raw_content=True,
                include_images=True,
                # search_depth="advanced",
                # include_domains = []
                # exclude_domains = []
            )

    Invoke directly with args:

        .. code-block:: python

            tool.invoke({'query': 'who won the last french open'})

        .. code-block:: python

            '{\n  "url": "https://www.nytimes.com...", "content": "Novak Djokovic won the last French Open by beating Casper Ruud ...'

    Invoke with tool call:

        .. code-block:: python

            tool.invoke({"args": {'query': 'who won the last french open'}, "type": "tool_call", "id": "foo", "name": "tavily"})

        .. code-block:: python

            ToolMessage(
                content='{\n  "url": "https://www.nytimes.com...", "content": "Novak Djokovic won the last French Open by beating Casper Ruud ...',
                artifact={
                    'query': 'who won the last french open',
                    'follow_up_questions': None,
                    'answer': 'Novak ...',
                    'images': [
                        'https://www.amny.com/wp-content/uploads/2023/06/AP23162622181176-1200x800.jpg',
                        ...
                        ],
                    'results': [
                        {
                            'title': 'Djokovic ...',
                            'url': 'https://www.nytimes.com...',
                            'content': "Novak...",
                            'score': 0.99505633,
                            'raw_content': 'Tennis\nNovak ...'
                        },
                        ...
                    ],
                    'response_time': 2.92
                },
                tool_call_id='1',
                name='tavily_search_results_json',
            )

    """  # noqa: E501

    name: str = "tavily_search_results_json"
    description: str = (
        "A search engine optimized for comprehensive, accurate, and trusted results. "
        "Useful for when you need to answer questions about current events. "
        "Input should be a search query."
    )
    args_schema: Type[BaseModel] = TavilyInput
    """The tool response format."""

    max_results: int = 5
    """Max search results to return, default is 5"""
    search_depth: str = "advanced"
    """The depth of the search. It can be "basic" or "advanced"
    
    .. versionadded:: 0.2.5
    """
    include_domains: List[str] = []
    """A list of domains to specifically include in the search results. 
    
    Default is None, which includes all domains.
    
    .. versionadded:: 0.2.5
    """
    exclude_domains: List[str] = []
    """A list of domains to specifically exclude from the search results. 
    
    Default is None, which doesn't exclude any domains.
    
    .. versionadded:: 0.2.5
    """
    include_answer: bool = False
    """Include a short answer to original query in the search results. 
    
    Default is False.
    
    .. versionadded:: 0.2.5
    """
    include_raw_content: bool = False
    """Include cleaned and parsed HTML of each site search results. 
    
    Default is False.
    
    .. versionadded:: 0.2.5
    """
    include_images: bool = False
    """Include a list of query related images in the response. 
    
    Default is False.
    
    .. versionadded:: 0.2.5
    """

    api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper)  # type: ignore[arg-type]
    response_format: Literal["content_and_artifact"] = "content_and_artifact"

    def _run(
        self,
        query: str,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> Tuple[Union[List[Dict[str, str]], str], Dict]:
        """Use the tool."""
        # TODO: remove try/except, should be handled by BaseTool
        try:
            raw_results = self.api_wrapper.raw_results(
                query,
                self.max_results,
                self.search_depth,
                self.include_domains,
                self.exclude_domains,
                self.include_answer,
                self.include_raw_content,
                self.include_images,
            )
        except Exception as e:
            return repr(e), {}
        return self.api_wrapper.clean_results(raw_results["results"]), raw_results

    async def _arun(
        self,
        query: str,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> Tuple[Union[List[Dict[str, str]], str], Dict]:
        """Use the tool asynchronously."""
        try:
            raw_results = await self.api_wrapper.raw_results_async(
                query,
                self.max_results,
                self.search_depth,
                self.include_domains,
                self.exclude_domains,
                self.include_answer,
                self.include_raw_content,
                self.include_images,
            )
        except Exception as e:
            return repr(e), {}
        return self.api_wrapper.clean_results(raw_results["results"]), raw_results


class TavilyAnswer(BaseTool):  # type: ignore[override, override]
    """Tool that queries the Tavily Search API and gets back an answer."""

    name: str = "tavily_answer"
    description: str = (
        "A search engine optimized for comprehensive, accurate, and trusted results. "
        "Useful for when you need to answer questions about current events. "
        "Input should be a search query. "
        "This returns only the answer - not the original source data."
    )
    api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper)  # type: ignore[arg-type]
    args_schema: Type[BaseModel] = TavilyInput

    def _run(
        self,
        query: str,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> Union[List[Dict], str]:
        """Use the tool."""
        try:
            return self.api_wrapper.raw_results(
                query,
                max_results=5,
                include_answer=True,
                search_depth="basic",
            )["answer"]
        except Exception as e:
            return repr(e)

    async def _arun(
        self,
        query: str,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> Union[List[Dict], str]:
        """Use the tool asynchronously."""
        try:
            result = await self.api_wrapper.raw_results_async(
                query,
                max_results=5,
                include_answer=True,
                search_depth="basic",
            )
            return result["answer"]
        except Exception as e:
            return repr(e)
