o
    ȳg                     @   sb   d dl Z d dlmZmZmZmZmZmZ d dlm	Z	 d dl
mZmZ e eZG dd deZdS )    N)AnyCallableDictIteratorListOptional)Document)	BaseModelmodel_validatorc                   @   s   e Zd ZU dZdZeed< dZeed< dZe	ed< dZ
eeegef  ed	< eed
< eddededefddZdee fddZdee fddZdS )TensorflowDatasetsav  Access to the TensorFlow Datasets.

    The Current implementation can work only with datasets that fit in a memory.

    `TensorFlow Datasets` is a collection of datasets ready to use, with TensorFlow
    or other Python ML frameworks, such as Jax. All datasets are exposed
    as `tf.data.Datasets`.
    To get started see the Guide: https://www.tensorflow.org/datasets/overview and
    the list of datasets: https://www.tensorflow.org/datasets/catalog/
                                               overview#all_datasets

    You have to provide the sample_to_document_function: a function that
       a sample from the dataset-specific format to the Document.

    Attributes:
        dataset_name: the name of the dataset to load
        split_name: the name of the split to load. Defaults to "train".
        load_max_docs: a limit to the number of loaded documents. Defaults to 100.
        sample_to_document_function: a function that converts a dataset sample
          to a Document

    Example:
        .. code-block:: python

            from langchain_community.utilities import TensorflowDatasets

            def mlqaen_example_to_document(example: dict) -> Document:
                return Document(
                    page_content=decode_to_str(example["context"]),
                    metadata={
                        "id": decode_to_str(example["id"]),
                        "title": decode_to_str(example["title"]),
                        "question": decode_to_str(example["question"]),
                        "answer": decode_to_str(example["answers"]["text"][0]),
                    },
                )

            tsds_client = TensorflowDatasets(
                    dataset_name="mlqa/en",
                    split_name="train",
                    load_max_docs=MAX_DOCS,
                    sample_to_document_function=mlqaen_example_to_document,
                )

     dataset_nametrain
split_named   load_max_docsNsample_to_document_functiondatasetbefore)modevaluesreturnc                 C   sz   zddl }W n ty   tdw zddl}W n ty#   tdw |d du r.td|j|d |d d	|d
< |S )z7Validate that the python package exists in environment.r   Nz\Could not import tensorflow python package. Please install it with `pip install tensorflow`.znCould not import tensorflow_datasets python package. Please install it with `pip install tensorflow-datasets`.r   zmsample_to_document_function is None. Please provide a function that converts a dataset sample to  a Document.r   r   )splitr   )
tensorflowImportErrortensorflow_datasets
ValueErrorload)clsr   r   r    r   m/var/www/html/chatdoc2/venv/lib/python3.10/site-packages/langchain_community/utilities/tensorflow_datasets.pyvalidate_environment?   s,   
z'TensorflowDatasets.validate_environmentc                    s    fdd j  jD S )zYDownload a selected dataset lazily.

        Returns: an iterator of Documents.

        c                 3   s$    | ]} j d ur  |V  qd S )N)r   ).0sselfr   r    	<genexpr>c   s    
z/TensorflowDatasets.lazy_load.<locals>.<genexpr>)r   taker   r$   r   r$   r    	lazy_load]   s   
zTensorflowDatasets.lazy_loadc                 C   s   t |  S )zMDownload a selected dataset.

        Returns: a list of Documents.

        )listr(   r$   r   r   r    r   i   s   zTensorflowDatasets.load)__name__
__module____qualname____doc__r   str__annotations__r   r   intr   r   r   r   r   r   r
   classmethodr!   r   r(   r   r   r   r   r   r    r   
   s   
 .r   )loggingtypingr   r   r   r   r   r   langchain_core.documentsr   pydanticr	   r
   	getLoggerr*   loggerr   r   r   r   r    <module>   s     
